Self Organizing Networks: A Reinforcement Learning approach for self-optimization of LTE Mobility parameters
نویسنده
چکیده
With the evolution of broadband mobile networks towards LTE and beyond, the support for the Internet and Internet based services is growing. Self Organizing Network (SON) functionalities intend to optimize the network performance for the improved user experience while at the same time reducing the network operational cost. This paper proposes a Reinforcement Learning (RL) based framework to improve throughput of the mobile users. The problem of spectral efficiency maximization is modeled as co-operative Multi-Agent control problem between the neighbouring eNodeBs (eNBs). Each eNB has an associated agent that dynamically changes the outgoing Handover Margin (HM) to its neighbouring cells. The agent uses the RL technique of Fuzzy Q-Learning (FQL) to learn the optimal mobility parameter i.e., HM value. The learning framework is designed to operate in an environment with the variations in traffic, user positions and propagation conditions. Simulation results have shown the proposed approach improves the network capacity and user experiences in terms of throughput.
منابع مشابه
Load balancing and handover joint optimization in LTE networks using Fuzzy Logic and Reinforcement Learning
With the growing deployment of cellular networks, operators have to devote significant manual effort to network management. As a result, Self-Organizing Networks (SONs) have become increasingly important in order to raise the level of automated operation in cellular technologies. In this context, Load Balancing (LB) and Handover Optimization (HOO) have been identified by industry as key self-or...
متن کاملSelf-optimization of coverage and capacity based on a fuzzy neural network with cooperative reinforcement learning
Self-organization is a key concept in long-term evolution (LTE) systems to reduce capital and operational expenditures (CAPEX and OPEX). Self-optimization of coverage and capacity, which allows the system to periodically and automatically adjust the key radio frequency (RF) parameters through intelligent algorithms, is one of the most important tasks in the context of self-organizing networks (...
متن کاملSelf-Organizing Mobility Robustness Optimization in LTE Networks with eICIC
We address the problem of Mobility Robustness Optimization (MRO) and describe centralized Self Organizing Network (SON) solutions that can optimize connected-mode mobility Key Performance Indicators (KPIs). Our solution extends the earlier work of eICIC parameter optimization [7], to heterogeneous networks with mobility, and outline methods of progressive complexity that optimize the Retaining/...
متن کاملMobility robustness optimization in self-organizing LTE femtocell networks
Femtocell is a promising solution for enhancing the indoor coverage and capacity in wireless networks. However, for the small size of femtocell and potentially frequent power on/off, existing handover schemes may not be reliable enough for femtocell networks. Moreover, improper handover parameters settings may lead to handover failures and unnecessary handovers, which make it necessary to enhan...
متن کاملSelf-organizing Neural Architecture for Reinforcement Learning
Self-organizing neural networks are typically associated with unsupervised learning. This paper presents a self-organizing neural architecture, known as TD-FALCON, that learns cognitive codes across multi-modal pattern spaces, involving states, actions, and rewards, and is capable of adapting and functioning in a dynamic environment with external evaluative feedback signals. We present a case s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014